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ABSTRACT

The finite element methods (FEM) have proved to be a powerful technique
for the solution of boundary value problems associated with partial
differential equations of either elliptic, parabolic, or hyperbolic type.
They also have a good potential for wutilization on parallel computers

particularly in relation to the concept of domain decomposition.

This report is intended as an introduction to the FEM for the
nonspecialist. It contains a survey which is totally nonexhaustive, and it
also contains as an illustration, a report on some new results concerning two
specific applications, namely a free boundary fluid-structure interaction

problem and the Euler equations for inviscid flows.

This work was supported wunder the National Aeronautics and Space
Administration under NASA Contract No. NAS1-18107 while the author was 1in
residence at the 1Institute for Computer Applications in Science and
Engineering (ICASE), Hampton, VA 23665-5225.
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INTRODUCTION

It is totally impossible to survey the theory of finite element methods
within a few pages, and the object of this article is to describe for the
nonspecialist some very basic ideas and concepts in finite elements approxima-
tions and to discuss some future trends in the theory without any attempt at
being exhaustive. Beside this survey part, this article contains in Sections
8 and 9 a report on some new results concerning two specific problems, viz. a

free boundary fluid structure interaction problem and the Euler equations for

inviscid flows.

There 1is no agreement about the first appearance of the method. Finite
element methods have probably been used for many years for computing and
engineering purposes in a more or less explicit form. R. Courant mentiocas in
[10] the approximation of a function in ® by continuous piecewise linear
functioas on a triangulation, and this may be the first appearance 1in the
mathematical literature.

Although it is difficult to track the first appearance of the method,
there is no doubt that the first systematic and large scale utilizations of

the finite element methods (FEM) occurred in the sixties in so0lid mechanics

engineering. The period coincides of course with the first computers and the
early stages of what we now call scientific computing. Probably the reasons
which made FEM immediately popular among solid mechanics engineers is that, as
we recall below, the foundations of the FEM coincide with some very funda-
mental concepts in solid mechanics. The method has then spread with different
levels of response in fluid mechanics, optimization and control theory, and

among mathematicians.



Alike the solid mechanists, mathematicians (numerical analysts and some
more theoretically oriented mathematicians) have been working in FEM because
the methods are appropriate for mathematical treatment and are very close in
their fundamental concepts to the ideas and tools which are used in the
mathematical treatment of the linear and nonlinear boundary value problems by
functional analysis.

The mathematical and engineering 1literature oa FEM for partial
differential equations 1is abundant, and there is no way to survey it here.
The questions that we address are the following ones: 1In Section 1, we recall
the principle of weak formulations, and in Section 2, we recall the role of
domain decomposition in the context of structural mechanics. We return to
domain decomposition in Section 9 as it relates to future developments in the
FEM in relation with parallel computation and some possible extensions of the
method. Sections 3 to 5 are devoted to the description of very typical
mathematical results. Section 3 describes the general mathematical framework
and the most common finite elements. Section 4 provides some convergence and
error results while Section 5 is an introduction to mixed and hybrid finite
elements. Some specific applications (among many others) of the FEM are then
described. Section 6 is related to the Navier-Stokes equations. Section 7
deals with fluid-structure interactions problems, and Section 8 deals with the
applications of FEM to the solution of the Euler equatioans. Finally, as
indicated above, we return in Section 9 to domain decomposition and the role

that this can play in future developments for FEM.




FOUNDATIONS OF THE FEM
The finite element methods lie on two fundamental ideas:

~ the weak formulation of a boundary value problem,

- the domain decomposition, i.e., the decomposition of the domain

corresponding to the problem into smaller subdomains, the elements.

As mentioned above, both ideas are closely related to basic concepts of
solid mechanics. The weak formulation of a boundary value problem coincides
with the virtual work theorems and energy principles in the statics of
solids. Domain decomposition is also an extrapolation of the natural approach
in structural mechanics where large structures consist of smaller substruc-
tures which are properly coannected or assembled, and the study of the large
structure 1is reduced to that of the elementary structures and their

connections.

1. Weak Formulations

We begin by recalling briefly the weak formulation of some boundary value
problems in solid and fluid mechanics. Other examples of weak formulations

will appear below (abstract boundary value problems).

l.a. Weak Formulations in Solid Mechanics

Consider a solid body which fills at rest a region Q of B with
boundary T. We assume that the body is subjected to volumic forces of
density f = (fl,fz,f3) in @ and to surface (traction) forces of surface
density F = (Fl,Fz,F3) on some part Fl of T and reaches a new
equilibrium position. The unknowns of the problem are:

- the field displacements, u = (uj,up,u3), u(x) x€Q, representing the




displacement between the position at rest of a particle XEQ and its
new equilibrium position x + u(x).
- the boundary stress tensor field, o = (o,.).

Under the assumption of small displacements, the equilibrium equations

read
3 aoij

(1.1) .2 se- +t £, =0 in Q
j=1 7]
3

(1.2) jzl 15 V5 = Fy on T,

where v = (vl,vz,v3) is the unit outward normal on T.
Usually the displacement u 1is given on the complementary part
FO of Fl, FO = I‘\I‘1

(1.3) u=1"U on T..

The so-called set of statically admissible stress tensors Sad(f,F) is
the set of tensor fields o satisfying (1.1) and (l.2). The set Cad(U)
is the set of kinematically admissible displacement fields, i.e., the set of
u’s satisfying (1.3).

The equations (l.1) - (1.3) which hold for any material are supplemented

by the constitutive equations of the material which depend on the material and

connect stresses and displacements. Without describing these relations, we

can already see the weak formulation of the problem. Let ¢, u be solution

of (1.1) - (1.3) and let v be another kinematically admissible field of dis-

0
placements, veCad(U) (and w=v - uecad Cad(o))' We multiply (1.1) by




Wis add these relations for 1 = 1,2,3, integrate over Q, and use Green

formula and (1.2) (1.3). We obtain

= 0
(1.4) f 945 Eij(w)dx =f fowdx + / F w,dr, for all weC_,,

1) Q Fi

where the Einstein summation convention has been used and e(w) = (g, ,(w))

ij
is the strain teasor
w ow
=1 1 h|
€33 =3 G+ )
j i
If we remember that o =0o(u) due to the constitutive law, we find

that (1.4) is the weak formulation for the displacementsl. For instance, in

the simplest case of linear elasticity we have pointwise

(1.5) o,.(x)

14 = Aijklekl(u)(x), for all xe€R,

where the coefficlents Aijkl define a linear positive invertible operator

A 1in the space of symmetric tensors of order two. Whence (l.4) becomes

_ 0
(1.6)£ Aijkl(u)ekl(u)eij(w)dx =f fiwidx + [ fw.dr, for all weCad.

Q Fl

In linear and nonlinear elasticity, the weak formulation (1.4) (or (1.6))

coincides with the relation given by the virtual work theorem. It leads also

to energy principles.

1A similar formulation is avallable for the stresses o,



l.b. Weak Formulations in Fluid Mechanics

Weak formulations in fluid mechanics do not have a physical interpreta-
tion as natural as in solid mechanics. They have been introduced by J. Leray
([16], [17], [18]) for the study of weak (i.e., nonregular) solutions of the
Navier-Stokes equations in an attempt to explain turbulence by the appearance
of singularities in the curl vector of the flow. Although we do not know yet
if such singularities arise in space dimension three, there is no doubt that
the coatribution of J. Leray has been a fundamental step for the mathematical
treatment of the Navier-Stokes equations by the modern methods of functional
analysis and also for the numerical treatment of the equations in Computa-
tional Fluid Dynamics.

Consider for example the Navier-Stokes equations of an incompressible
fluid in the stationary case. The fluid fills a bounded region Q of H@
with boundary T. In the Eulerian representation of the flow, the unknowns
are the velocity field u = (ul,uz,u3) and the pressure field p; u = u(x),
XEN is the velocity of the particle of fluid at x, and p(x) 1is the

pressure at point x. We have the equations

(1.7) —vAu + (u*V)u + Vp = £ in Q
(1.8) div u =0 in Q,
where v >0 is the kinematic viscosity and f represents volumic

forces. Equation (1.7) is the equation of conservation of momentum. Equation
(1.8) is the incompressibility equation, i.e., the equation of mass conserva-

tion. If r is materialized and moving with velocity U, then the nonslip




condition on T is

(1.9) u=U on T.

Let V(U) be the space of functions satisfying (1.8) and (1.9). Then
vel/(U) and if v 1is a test function in V(U), w=v - ue€ |/(0). We take the
scalar product of (l1.7) with w (pointwise in B@), integrate over 2, and

use Green”s formula. We have

Q

u, 9w

i
X, 93X, dx
J |

e

Q

-[ Au wdx = ~f Auiwidx =

Q Q Q
[ grad pewdx = [ pwevdl - p div wdx = 0.
Q r Q

Whence p disappears and we obtain the weak formulatioan of (1.7) - (1.9):

ue KU) and for every welX0)

3 Bui Bwi Jdu
(1.10) vi,§=l {2 5.)(:.3_)(; dx +i’§=1 {2 u %, w.dx =
3
=1£1 i £, w, dx.

It is equivalent to say that u satisfies (1,10) or that u satisfies (1.7)

- (1.9). The striking fact in formulation (1.10) is that the pressure

disappears and we are left with an equation involving u only. Once u 1is
found we know from mathematical results that there exists p which is defined

up to an additive constant by (1.7). However, in the practice of numerical



computations p 1is obtained differently, in general, as the Lagrange multi-~

plier of the constraint div u = 0 (see Section 5 below).

2. Domain Decomposition

In structural mechanics it is natural to compute a complicated structure
by considering the smaller substructures of which it is made. Each substruc-
ture is well modeled, its behavior is well understood, and then the mechanical
engineers model the 1interaction (contact laws, etc.) of the different
components to obtain the description of the full structure.

As mentioned before, finite elements in solid mechanics have started as
an extrapolation of this idea to continuous bodies: the full solid body is
decomposed into smaller elements; a simplified constitutive law is adopted on
each element; and a simplified version of the constitutive law 1leads to

simplified interactions laws between the contiguous elements.

Figure 2.1




Similarly, the particle and cells methods in fluid mechanics which are
very close to the finite element methods are based on a simplified analysis of
the flow in small cells with simplified fluid transfer laws. The generaliza-
tion and mathematization of the FEM have led to a more systematic view and a
more systematic approach.

Beside discretization, there are several other good reasons to decompose
a large domain into smaller subdomains. These reasons are also at the heart
of future developments 1in scientific computation and probably finite

elements. We will returan on this important question in Section 8.

MAIN METHODS — MAIN MATHEMATICAL RESULTS
We give an overview of some typical finite element methods and some

typical mathematical results which have been obtained.

3. The Usual Finite Elements Methods

3.a. A Model Problem

We consider as a model problem the following mathematical problem.
We denote by @ an open bounded domain of W', with boundary T, and
we consider a Laplace equation,

(3.1) —Au+u=f in @,

with associated boundary conditions of Dirichlet and Neuman type
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(3.2) u=0 on FO
(3.3) du _ 0 on T
v 1
where Fo, rl is a partition of T. In the two-limit cases

FO =T, Fl = @ and FO =0, Pl =T we obtain respectively the Dirichlet and
Neuman problems; the general case 1s a mixed boundary value problem.

Let V be the space of functions u satisfying (3.2) and possessing a
certain level of regularity which we do not specify at the moment. The solu-

tion u of (3.1) - (3.3) belongs to V and if v 1is a test function in V,

we multiply (3.1) by v, integrate over 2, and apply Green”s formula.

Thanks to (3.3) (and v = 0 on FO) we fiad
f g f du dv
(3.4) - Au vdx = — — dx
Q i=1 o 9% 9%
and thus
u€V  and
(3.5)
a(u,v) = (f,v), for all veV
where
(3.6) a(u,v) = ? f %%- %% dx + f uvdx
i=1 Q i i Q

and
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(3.7) (£,v) = f f(x) v(x)dx
Q
is the scalar product in L2(q).

Conversely, it can be proved (under suitable regularity assumptions) that
if u satisfies (3.5) then wu 1is the solution of (3.1) - (3.3). Equation
(3.1) is derived from (3.5) by appropriate methods using distribution deriva-
tives; (3.2) follows from "ueV" whereas (3.3) is a boundary condition hidden
in (3.5). This is a general fact with weak formulations like (3.5): some
boundary conditions of the problem are contained in the definition of the
space V, and some boundary conditions are contained in the equation (3.5).

Let us give a more precise definition of the space V. Roughly speaking,

the space V will be the space of all functions u vanishing on FO and

such that a(u,u) < =, More precisely it 1s easy to see that the expression
11.
{a(u,u)}"

is a norm on the space of continuously differentiable functions on ®  which

vanish on T We define V as the completion of this space for this norm;

00

we obtain the space

(3.8) v = {venl(a), v|, =0}
0

where Hl(Q) is the Sobolev space

(3.9) Hl(n) = {veLZ(Q), %‘XL_GLZ(Q), i=1l,. .,n}.
i
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More generally Hm(g) the Sobolev space of order m, is the space of
’ p

functions u square integrable in Q (uGLZ(Q)) such that all derivatives

of order < m are square integrable also.

3.b. Abstract Boundary Value Problem

The situation in (3.5) is typical of many linear elliptic boundary value
problems. The abstract setting is the following one:

- We are given a Hilbert space V (norm H-HV) and a bilinear form a

on V x V which is continuous, i.e.,

(3.10) There exists M { = such that
a(u,v) <M Hunv anv, for all u,vev
and coercive, i.e.,
(3.11) There exists a > 0  such that

a(u,u) > a lul,2, for all wueV.

v

— We are given also a linear coantinuous form L on V, i,e., an element

of the dual V° of V

and then the problem is

(3.12) {To find u€V such that

a(u,v) = <&,v>, for all veV.
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Despite its simplicity, (3.12) is applicable to many interesting boundary
value problems in mechanics and physics. The existence and uniqueness of a
solution u of (3.12) is classically provided by the Lax-Milgram Theorem (see
for instance [28]).

More generally nonlinear elliptic boundary value problems can be set in a
form similar to (3.12) if we allow V to be a Banach space and a to be
nonlinear with respect to its first argument (i.e., a maps V x V into R and
is linear with respect to its second argument). For instance, it follows
readily from (1.10) that the stationary Navier-Stokes equations (1.7) - (1.9)
with U = 0 can be written in this form. Similarly, consider the problem

(3.1) - (3.3) and replace the linear equation

-Au +u=f in Q

by the nonlinear one

(3.13) -Au + p(u) = £ in Q,

where p 1s a polynomial of odd degree with a positive leading coefficient.

Then (3.13), (3.2), and (3.3) can be set in a form similar to (3.12)

+1
v = {verl@)N 1% (@), vl, =0},
0
2 du v
a(u,v) =3 f 5 T dx + [ p(u)vdx,
i=l Q i i Q

where o is the degree of the polynomial p (see [28]).
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In the nonlinear case, there are no general assumptions on a covering
all the interesting situations, and we will restrict ourselves to specific

examples,

3.c. General Form of Finite Element Approximations

The discretization of the abstract boundary value problem (3.12) consists
in choosing

-~ a family of finite dimensional approximations of V

Vi hen
- a family (au(uh, vh))h€H of bilinear forms on Vi x V  which
approximate a.

Roughly speaking there are two types of discretizations produced by the

finite elements:

- the conforming finite elements in which the V, are subspaces of V of

higher and higher dimensions as the parameter 0,

- the nonconforming finite elements in which the V, are not subspaces

of V.
Of course finite elements have been only used in space dimension n = 2
and at a less developed stage when n = 3. We consider first the case where
f is a polygonal set. A basic ingredient of FEM is a triangulation of
Q. By this, we mean a suitable covering of Q by either
- a family of triangles,
- a family of rectangles whose sides are parallel to the axes (or more
general quadrilateral sets),
-~ or a combination of triangles and rectangles (or quadrilateral sets).
The triangles or rectangles are the (finite) "elements.'" The space Vy

consists of functions of a given type (usually a polynomial) on each element
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which are properly coanected. The values of the functions of Vi or their

derivatives at some particular points of the elements (vertices, mid-

edges,...) are the nodal values which fully determine the fuactions in V,. A

natural basis of V, consists of the so-called shape functions: These are

the functions of Vy whose nodal values are 1 for one of them and 0 for
all the others. In most cases these functions have a "small" support, and
this leads to fairly sparse matrices for the discretized problem. When a
function v 1is defined on (or on an element K), its interpolant on

Q (or K) denoted rLv (or rKv) is the fuonction of Vy (or the elementary

function on K) which has the same nodal values as v.

3.d. Conforming Finite Elements (n = 2).

For second order elliptic boundary value problems, the basic space V
is HI(Q) or a product of such spaces or a subspace of such spaces.

The simplest and most common elements used in this case are the P1
elements on triangles and the Q; elements on rectangles. P) (respectively
P,) is the set of polynomials of degree < 1 (resp. < m), whereas Q) (resp.
Qm) is the set of polynomials of degree < 1 (resp. { m) with respect to each
variable.

Some other typical elements used for second order boundary value problems

are depicted in Figure 3.1. We will return to the ©P; and Qp elements

after we briefly describe the elements in Figure 3.1.

Triangles

linear: polynomials of degree <1 on the triangles, nodal values =

values at vertices.
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Ao R

Linear, quadratic, cubic triangles

NS

e2 ezh
| I - T
€1 e 1
Linear, quadratic, cubic rectangles
-@-
"
€2
] >
1
Conforming Reduced Cubic Reduced quadratic
Hermite elements Triangle Triangle

Figure 3.1: Conforming Finite Elements (n = 2)




quadratic:

cubic:

reduced cubic:

Rectangles

linear:

quadratic:

cubic:
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polynomials of degree < 2 on the triangles; nodal values

values at vertices and midedges.

polynomials of degree < 3 on triangles; nodal values

values at vertices, barycenter and 1/3 points on edges.

polynomials of degree < 3, wvanishing at the barycenter on
each triangle; nodal values = values at vertices and 1/3

points on edges.

polynomials of degree <1 in each wvariable on

rectangles; nodal values = values at vertices.

polynomials of degree < 2 in each variable; nodal

values = values at vertices, midedges, and ceater.

polynomials of degree < 3 in each variable; nodal
values = values of function at 16 different points (see

Figure 3.1).

reduced quadratic: polynomials of degree < 2 ia each variable satisfying a

linear relation (on each rectangle); nodal values =

values of function at vertices and midedges.
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All functions obtained by these elements are globally c® (continuous)
except the quadratic Hermite triangle which produces cl approximants
(continuously differentiable functions).

More special elements can be found in the literature; cf. for instance
the book of P. G. Ciarlet [9] on the mathematical side, and the book of
Zienkiewicz [33], the work of Argyris [1] and others on the engineering or
mechanical sides.

The more sophisticated elements produce better (more precise) results but
need more computing time and a good expertise in finite elements technology.
In a nonspecialized industrial environment, the tendency seems to be the
utilization of simple elements of degree one or at most two with a suitable
refinement of the mesh.

As mentioned above the simplest and most commonly used elements are the
Py elements on triangles and the Q; elements on rectangles with sides
parallel to the x and y axes. Let us mention also the quadrilateral
elements described hereafter.

Let K denote the square (0,1) x (0,1) in the £, N plane. We
observe that a mapping F with Q; components

a+ bt + con + din
F(E,n) = {
a” + b’E + ¢'n + d7En

~

can map K on any arbitrary quadrilateral K of the x,y plane. The
image by F of a line in the E,n plane is generally a curved line of the
X,y plane. However the lines x = constant, y = constant, and in particular

the boundary of K are mapped by F onto straight lines of the x,y

plane. A natural element on the quadrilateral K 1is the image by F~l of
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the Ql

Figure 3.2

~

element on KX:

-1 -1
q = q( ,n)EQl + qoF " = qoF (x,y).

In general these elements are not polynomials on K. They are, however,

easy to use and their explicit expression is rarely used.

3.e. Conforming Finite Elements (n = 3)

The triangulation is now the covering of Q@ (= a polygonal set) by

either tetrahedrons or 3-D rectangles whose edges are parallel to the axes or

combinations of those.
The most common elements are the
- linear, quadratic, and cubic tetrahedrons.
- linear, quadratic, and cubic 3-D rectangles.
The definitions of these elements are the same as above in the two-dimensional

case replacing triangle by tetrahedron and rectangle by 3-D rectangle. For
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quadratic, cubic tetrahedrons

Linear,

Linear, quadratic, cubic rectangles

=3)

Conforming Finite Elements (n

Figure 3.3:
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the cubic (tetrahedron and 3-D rectangle) elements, the nodal values are shown

on Figure 3.3. All these elements lead to functions which are globally C°

(continuous) but not more.

3.f. Nonconforming Finite Elements

As indicated above, nonconforming finite elements produce approximate
function spaces Vh which are not subspaces of V. For ianstance, the
linear nonconforming triangle described below produces, when applied to
Problem (3.12), approximate functions which are highly discontinuous. Still,
it may be useful to use such elements in at least two cases:

- Fluid flow problems where, due to the incompressibility condition divu
= 0, the 1linear triangle elements cannot be used in a straightforward
manner.

- Higher order problems, like the biharmonic problem where most elements
described above fail to produce ¢! functions, and thus the approximate
spaces Vy would not be included in H2 () (= the natural space for a

biharmonic problem).

Nonconforming linear elements

2-D Case (Triangles)

Polynomials of degree < 1 on the triangles

Nodal values = values at midedges
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3-D Case (Tetrahedron)

Polynoms of degree < 1 on the tetrahedroas

Nodal values = values at barycenter of faces

The global functions are totally discontinuous with discontinuities along
the edges of triangles (or faces of tetrahedrons) except for the barycenters
(of edges or faces). The method is nevertheless convergent and efficient,
particularly for fluid flows: see the book of F. Thomasset [32] which is

fully devoted to the utilization of these elements in 2-D flows.

3.g. Curved boundaries

Curved boundaries can be approximated by polygonal lines. Alternatively
one can use the so-called isoparametric elements: the element is the image by
an appropriate (simple) mapping of a triangle or a rectangle and the function
reduces on the element to the composition of a polynomial with that mapping.

A similar situation occurred with the Q; quadrilateral elements.

4, Convergence and Error Estimate

Concerning convergence and error estimates the situation is different for

linear and nonlinear problems.

4,a., Linear Problems

Two type of results have been derived in relation with error computation
and convergence (see for instance P. G. Ciarlet [9]):
~ interpolation error,

- approximation error.
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When V), 1is a conforming finite element space and u is a function in V (or
usually in a smaller space), we consider the interpolant ru of u in Vg
(this 1is the finite element function which assumes the same nodal values as
u, whereas rgu 1is the interpolant of u on an element K); the interpola-
tion results give an upper bound of the norm of u - THu in V and other
spaces. The approximation results are of a different nature: when ueV 1is a
solution of a problem like (3.5) and uh€Vh is a solution of the associated
discrete problem, then the error between u and uy 1s estimated for various
norms. In the optimal cases the error between wu and u, 1is of the same
order as that of the distance of u to Vy.

The general results are too abstract to be presented in detail here; we
will just recapitulate the error estimates corresponding to the elements
described above.

For an element K let Px denote the radius of the smallest ball
containing K, let pi denote the radius of the largest ball included in
K, and let ag = pK/pi.

The analysis is made under the assumptions that

= Sup pyp > O
(4.1) Ph KET, K
and
(4.2) Oy = Sup Ox remains bounded from above.

KeTh

If v 1is a function in V and 1V 1its interpolated function in Vp,

we consider the HM® gsemi-norm of v - ryv on an element K of the triangu-
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lation T, and on the whole domain Q:

1
v - rhvlm,K = { I o™ - rhv)lzdx} 12
[a]=m K

=m

v vl g = { I %y - rhv)lzdx} iy
[a]=m Q
where p* is a partial derivative of order 0] = m and the sum is
extended to all such derivatives.
For the elements described above, the 1interpolation result is the
following one:
On an element K assume that the interpolation operator ry 1is such
that P =P for each polynom p of degree < k, and assume that

T {s linear continuous from HKtL(K) into HM™(K), 0 <m<k+l. Then

k+l

Pk
(4.3) v - rKV|m,K <e (

,)m |v|k+1, K
ok

for all ver<tl(x).

We can also assemble the results on the different elements K of a tri-

angulation Th and obtain a similar bound on all of 2 (when Q is a

polygon fully covered by the elements):

k+l-m m
(4.4) v - vl g $Coy ohl V1,0

for all ver+1(Q).
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Finally in dimensions 2 or 3

- for the 1linear elements (triangles, rectangles, tetrahedrons, 3-D

rectangles) if:

2 -
k =1, veH (@), then |v - vlm’Q = O(ph ),

- for the quadratic elements (triangles, rectangles, tetrahedrons, 3-D

rectangles) if:
k = 2, veH>(@) then v - £ v] = 0(p. )
’ b m,Q h ’

h

- for the cubic elements (triangles, rectangles, tetrahedrons, 3-D

rectangles) if:

4 4-m
k = 3, ved (Q), then |v - rhvl - 0Cp, )
0 <m( 4.

Concerning the approximation error, they are optimal (i.e., the approxi-
nmation error is of the order of the best interpolation error), for instance,
with the elements above, for Problem (3.1) - (3.5) when PO =
(Dirichlet problem) or PO = @, Fl =T (Neuman problem), and 1) is a

polygon fully covered by the elements of the triangulation Ty
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4.b. Nonlinear Problems

For nonlinear problems the situation is more difficult and the results
are less complete. Usually convergence results can be proved by using energy
type inequalities and convergence techniques which are appropriate for the
type of equations considered: see for instance [28] for the nonlinear problem
(3.13), (@3.2), (3.3), and [29] for the Navier-Stokes equatioas. When
compactness methods are used some involved compactness arguments for finite
elements may be necessary: c¢f. in R. Temam [29] the proof of convergence of
the nonconforming Py finite element methods for the WNavier Stokes
equations. Also by lack of uniqueness for nonlinear elliptic problems the
convergence may be limited to a subsequence or may assume as usual that we are
"close" to the solution.

Exrror estimates are also more difficult to obtain than in the 1linear
case. They assume usually more regularity on the equation and/or the solution

that is necessary for convergence.

5. Mixed and Hybrid Finite Elements

5.a. Minimax Formulation of a Boundary Value Problem

Consider an abstract boundary value problem of the form (3.12)

To find w€V such that
(5.1)

a(u,v) = <&,v>, for all ueV.
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When the bilinear form a is futhermore symmetric, then (5.1) is equivalent

to a convex minimization problem:

To minimize for vev,
(5.2)

J(v) = %-a(v,v) - <L,v>.

The infimum of J on V 1is attained at a unique point of V which is called
a solution (or a minimizer) for the variational problem (5.2). 1In fact the
solution of (5.1) is the same as that of (5.2).

The mixed finite elements are closely related to duality. A natural

framework for both questions arises when V is a linear subspace of a Hilbert

space X of the form

(5.3) V = {VGX, b(v,$) = 0 for all ¢€Y},

where Y 1is another Hilbert space and b 1is a bilinear continuous form on X
x Y. We assume furthermore that a 1s extended as a bilinear continuous form

on X and that 2 is extended as a linear continuous form on X.

In this case we introduce the Lagrangian of the problem (cf. Ekeland-

Temam [11]):

(5.3) L{v,p) = J(v) + b(v,¥).

It is easily verified that
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J(v) if vev

Sup L(v,$) = l
4o

PEY if  vex\v

and that the minimization problem (for veV):

(5.4) Inf{Sup L(v,¥)}
véV YEY

has the same solution and the same infimum as (5.2).

Now we can associate with (5.3) the so-called dual problem of (5.4) which

is a maximization problem in Y

(5.5) Sup {Inf L(V,W)}
YEY vev

It is shown in [11] that if L (i.e., here ©b) satisfies a suitable condition,
then (5.5) has a unique solution denoted b Furthermore, the pair

{u,0}€X x Y 1is a solution of (5.5) and (5.4) (or (5.1)) if and only if

3 5L
5{‘7 (u,0) =3¢ (u,0) = 0, 1.e.,

‘a(u,v) + b(v,$) = <2,v>, for all veX

.

(5.6)
Ib(u,w) = 0, for all ¢€Y

The 1ianitial problem (5.1) (5.2) is written in X as a constrained

minimization problem

‘To minimize J(v) for v€X, subject to the constraint
(5.7)

Ib(v,w) =0 for all €Y.
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The above framework assoclates to the initial problem (5.1) (5.2) (5.7) an

element $ of X which is the Lagrange multiplier for the constrained

optimization problem (5.7).
The necessary condition on b which guarantees the existence of $,

the so-called inf-sup condition, was iantroduced independently by Babuska [2]

and Brezzi [5] and reads

There exists B > 0 such that

(5.8)

Ianf Sup ;%%192——-> B.

YEY veEX xWhy =

Equivalently (5.8) means that the 1linear operator B from X into Y~

defined by

(5.9) <Bv,p> = b(v,p), for all vex, for all P€Y”

is an isomorphism from the orthogonal of V in X onto Y~ or that the

adjoint B of B which maps X into Y 1is an isomorphism from X onto

the polar set V% of V

v® = [8e€x”, <8,v> = 0, for all veV}.

The reader is referred for more details to the article of Brezzi in this
volume. Note that the form (5.6) of the problem can be studied independently
of the corresponding Lagrangian and variational problems and is suitable for

several types of generalizations:
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- Given a linear continuous form X on Y, we can replace the second
equation (5.6) by

blu,p) = <x,p>, for all yPeY

- More important, the form a may be nonlinear with respect to its first
argument u, and this corresponds to considering nonlinear partial
differential equations, in particular the Navier-Stokes equations (see below)

or monotone operators (see [24]).

See also in [11] a different point of view for duality which includes

(5.6) as a particular case.

Remark 5.1. - Let us mention also here the penalization of (5.6) which

leads to consideration of the following problems

To find Fe¢ X, ¢€E Y such that
(5.10) a(u®,v) + b(v,¢€) = <g,v>, V veX

—ec(pe,w) + b(ue,w) = 0, for all yeY

where ¢ 1s a bilinear continuous coercive symmetric form on Y and
e >0 is a fixed positive parameter which is intended to tend to 0. A
€

solution u® ,¢¢ of (5.10) exists for every € > 0, and u®,4€ converges

to the solution u, ¢ of (5.6) when €+0; see M. Bercovier [3].
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5.b. Examples

Stokes Equations

The Stokes equations provide one of the most typical examples where the
framework (5.6) is suitable. Stokes problem is the problem (1.7) - (1.10)
when U = 0 and the nonlinear term (ueV)u is dropped. 1In this case
(@ C B, n=3 or more generally n # 3):

v

X = Hé(n)“ = {VGLZ(Q)n, g;r-eLz(n)“, ¥i, v=0 on T}
i

vV = {VGX, div v = 0}

Y = {¢€L2(Q), [ ¢(x) dx = 0}
2 0
\
n Bui av, }
a(u,v) =v Z f Y 5% dx |
i.i=1 Q i 3

Fo

b(v,$) = -f (div v) ¢ dx.
Q

It can be shown that (5.6) is equivalent to the Stokes problem

]
rh

-vAu + grad p in @

[
(]

(5.10) div u in Q

u=0 on T.

The operator div 1is a surjection from V onto Y (see for instance R. Temam
[29]), and it follows immediately that the Babuska-Brezzi condition (5.8) is

satisfied.
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As indicated above, we can set the Navier-Stokes equations in the frame-

work (5.6) with a replaced by a nonlinear form

a(u,v) = ao(u,v) + al(u,v)

n
ao(u,v) =y 3
j

In that case cf. [6].

Dirichlet Problem

The framework (5.6) applies to (3.5) and provides the dual .of this

problem (see Ekeland-Temam [11]). For simplicity we restrict ourselves to the

case where Fo =T, Pl =@, 1i.e., we consider the Dirichlet problem in g.

We set

LZ(Q)n

X = H(l)(Q) x L2@)", v
V= {u={u),u}ex, v = grad u}
and for u = {uj,u}, v ={vy,v }J€X and vey:
a(u,v) =gjz Uy, Vgdx +£ up s v, dx

QL,v> = fvodx
f
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b(v,p) = f (v1 - grad vo)-wdx.
Q

We identify (5.6) with (3.5). Condition (5.8) is trivially satisfied.

dual (5.5) reads

Lojw)2ax,
Q

~

s To maximize -

(5.11)
l 2 n
for ¢YeL“(Q) , divy + £ =0 in Q.

Biharmonic Problem

We consider the problem
(5.12) Au = £ 1in Q,

(5.13) u=0,2%-0 on T.

vV

It is set in the form (5.6) with

v 2

]
’axi > 9x

v

O’W—

vV = H(Z)(Q) = {VGLZ(Q) eL’@), for all 1,j, and v =

v
iaxJ
on F}

a(u,v) = f Au Av dx
Q

Q,vw = f fvdx.
Q

Then we set it in the form (5.6) with

0

The
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X = HCZ)(Q) x 12, Y = 12(@)

and for u = {uo,ul}, v = {vo,vl}EX and V€Y

a(u,v) = f ulvldx, <Q,v> = f fvodx
Q Q

b(v,p) = f (AvO - v1)~wdx.
Q

We identify (5.6) with (3.5). Condition (5.8) is trivially satisfied. The

dual (5.5) reads

s 1 2
To maximize - 7-] |¢| dx

(5.14) &

for ¢€L2(Q), Ay = £ in Q.

Problems involving the biharmonic appear in elasticity and in fluid mechanics

for the treatment of the Stokes problem by utilization of a stream function.

5.c, Mixed and Hybrid Elements

Once we have reduced Problem (5.1) to (5.6), we are naturally led to
approximate this last problem, i.e.,

- To find Xh’ Yh’ a, b which approximate X, Y, a, b, c.

b’ “h
- Solve for each h a discrete problem similar to (5.6):

-
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To find uhgxh, ¢h€Yh such that

(5.15) ah(uh,vh) + bh(vh,¢h) = <£h,vh> for all thXh

\ b, (u,,9,) = 0, for all y €Y.

Finite element methods appear naturally in the construction of the
spaces Xh and Yh. We have more flexibility than in an ordinary finite
element method since we can combine various finite elemeats for Xh and
for Yh. The major difficulty arises in the verification of the condition
(5.8) which leads sometimes to delicate algebraic questions. A thorough
investigation of the inf sup condition for various finite elements related to
the Navier-Stokes equations can be found in J. T. Oden and 0. P. Jacquotte
[21]. 1In some cases, the number ] in (5.8) corresponding to the discrete
case depends on h and tends to 0 as 0. In other cases, the inf sup
condition does not hold in the discrete case and we can make it true by
reducing the space Yh in order to suppress the kernel of the discrete
analogue B’h of B”; in practice this amounts to a filtering procedure.
The most famous example is the classical checkerboard instability for a Stokes
problem corresponding to the Q - Py element: Xh is a Q; approximation
of Hé(Q)z(n = 2) and Y, is a Py approximation of LZ(Q); the
filtering procedure is standard in this case; see also the analysis of the inf
sup condition in Boland-Nicolaides [4] who show with a counter example that
the best value of B in this (discrete) case is of the form ¢ h.

We will not develop further this question here since it is the object of

[6] and other articles in this volume.
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SPECIFIC APPLICATIONS
Finite element methods have been the object of many applications in

mechanics and physics. We describe now some specific applications.

6. Navier-Stokes Equations

The notations being the same as in Section 1 we consider the time

dependent Navier-Stokes equations for viscous 1incompressible flow 1in a

domain Q

(6.1) g.% —vAu + (wV)u +Vp = £ in @ x (0,T)
(6.2) divu=0 in Q x (0,T)
(6.3) u=U on T x (0,T).

The unknowns are the velocity vector u = u(x,t) and the pressure

p = p(x,t); the volumic forces f and the boundary velocity U (which may

both depend on time) are given.
We recall that from the mathematical point of view the initial value

problem for the Navier-Stokes equations, i.e., (6.1) - (6.3) supplemented by

an initial condition

(6.4) u(x,0) = uo(x), X€Q , u, given,

is well set in space dimension 2 (QC:Ig). However, we do not know yet 1if

the same result is true in space dimension 3 (QCII@), i.e., we do not know if
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the curl vector remains bounded or may become infinite even if the data are
regular; see for instance R. Temam [29].

The interval of time that we consider may be finite or infinite. Finite
intervals of time occur naturally in the study of transient phenomena, while
"infinite" intervals of time appear in the study of permanent regimes. For
instance 1if f and U are independent of time, then in some cases the solu-
tion u, p of (6.1) - (6.4) converges as t>o to a stationary solution,
i.e., a solution of (1.7) - (1.9) . A sufficient condition for this to occur

is that the Reynolds number R, is sufficiently small

where Uy is a typical velocity of the flow and Li a typical length of
92. 1f R, is large, the convergence to a stationary solution is not

guaranteed anymore. Based on experimental observations relative to turbu-

lence, we actually expect that u(s,t), p(e,t) do not converge anymore to

time independent solutions even if the data f,U are independent of time.

From the numerical point of view this will be the source of new difficulties
which have not yet been explored and will not be addressed here (R. Temam
[30]). Actually the computing power that is presently available leaves us at
the threshold of the occurrence of nonstationary phenomena at least in space

dimeunsion two.

2Typical velocities are provided by Vv and f 1in the form Lglkfxz norm(U),
LZ1vP2 norm(f), where appropriate norms are considered and the 0O _,, B. are
such that the corresponding expressions have the dimension of a velo&ity.1 The
sum of these two velocities is an appropriate definition of Ux.
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Up to now most of the numerical computations on the full Navier-Stokes
equations dealt with stationary phenomena (and transient phenomena). At this
level a major difficulty for the numerical solution of (6.1) - (6.4) (or (1.7)
- (1.9)) 1is the handling of the free divergence conditions which introduce
complicated algebraic coaditions in the discrete problem if it is not treated
correctly. A certain number of methods related to or independent from the
finite elements have been proposed to overcome the difficulties associated

with the condition div u = 0.

a) Utilization of the Penalty Method

The penalty method which is due to R. Courant [10] in the context of con-
strained optimization was applied to the Navier-Stokes equations in R. Temam
[25], [26]. The idea which stems from the variational form of the Stokes
problem (see Section 5) is to treat the condition div u = 0 as a constraint
and to "penalize" it, i.e., to replace (6.1)(6.2) by

du
€ 1 _
(6.5) — - \)Au8 + (ue-V)uE E-V(V ue) =f 1in Qx (0,T)

at
where e >0 is a small parameter which is intended to tend to 0. It can
be proved [26] that the solution of (6.3) - (6.5) converges to that of (6.1) -
(6.4) when e+0. A full asymptotic expansion of u®, p® 1in terms of
€ can even be obtained in the simpler case of Stokes flows [29].
The penalty method has been applied in several ways by many authors to

the finite element approximations of the Navier-Stokes equations, 1in

particular with the mixed finite elements (see Remark 5.1).

— — " —
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b) Utilization of Algorithms: Artificial Time Dependence

This method applies to the solution of the stationary problem (1.7) -
(1.9) or to the solution of the stationary problems arising from time dis-
cretization of (6.1) - (6.4). 1In these cases, an artificial evolution problem
is introduced whose stationary solution is also the solution of the stationary
Navier—Stokes equation.

For instance, one can consider the artificial evolution problem

-vAu + (ueV)u + grad p = £
(6.6)
9p . =
5t +a divu=20

(a > 0) or the equations of slightly compressible fluids

du

3¢ - VAu + (ueV)u + grad p = £
(6.7)
p =
5t + a div u = 0.

In both cases the condition div u = 0 1is not imposed at all times and
follows simply from the properties of (6.6) and (6.7) for large t.
Consequently, ordinary finite elements are used, i.e., finite elements not

containing the condition div u = 0.

c) Utilization of the Projection Method

This method introduced in A. J. Chorin [8] and R. Temam [27] is connected

to the fractional step method. It consists in solving the time evolution of
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(6.1) without (6.2) and then, more or less frequently, imposing (6.2) by
projecting the velocity obtained on the free divergence vector fields.

The time discretization (time mesh = At ) when U =0 1is given by

L ~m ~m o\ m
NG - vAu + (u eV)u = £ in @
(6.8)
W =u" on T
and u® = Proj. of U™ which amounts to saying that
ot =W - grad qm in Q
(6.9) divu® =0 in Q

um-g (= normal component of u’ on ') =0 on T.

Alternatively setting qm = At 7" we can rewrite (6.9) as

(6.10) divu® =0 in @

and p™ oprovides an approximation for the pressure. It is, however, a poor

approximation since it satisfies the following nonphysical boundary condition
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that we infer from (6.10):

anm
(6.11) Freantin 0 on T.

[ =

In order to determine u™ it is necessary to actually compute qm, wm, or
at least their gradient; " is a solution of the Neuman problem which
consists of (6.11) and

m_ 1 ~m
(6.12) A = i div u .

It seems better, for a more accurate determination of the pressure which
avoids the undesirable boundary layer resulting from (6.11), to consider
m _m

q ., as auxiliary functions and to compute the approximation p® of the

pressure by using the boundary value problem
(6.13) p =9  p" =M

that we deduce directly from the Navier-Stokes equations; cf. {29]. At this
point one can either use a Dirichlet or a Neuman boundary condition for p
[15].

Many other forms of (6.8)(6.9) can be also considered: one can split the
operators differently, leaving for example some viscosity in (6.9), one can
use an explicit scheme in (6.8), or one can solve for the evolution (6.8) for
several steps and perform the projection (6.9) periodically only.

In all cases when the projection method is used we need a space of free \
divergence vector functions so that the projection (6.9) can be performed in a

satisfactory manner. \
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d) Utilization of free divergence finite element spaces

The simplest element, the piecewise linear (Pl) function on triangles,
cannot be used since the condition div u = 0 1imposed on each triangle leads
to too many algebraic relations and the spaces of discrete divergence free
P, vector functions may be reduced to the function 0. One can either impose
the condition div u = 0 '"less often,”" or go to more complicated elements
such as the nonconforming P; element (F. Thomasset) or Py, Q;, Qp, <.,

elements.

7. Fluid Structure Interactions

In many industrial fields of interest, including the space industry,
engineers are confronted with fluids (water, oil, kerosene, gases, ...)
interacting with structures (tanks, containers, obstacles, ...) along a more
or less extended area.

In some cases deformations of the structure may be fairly important and
even affect the motion of the fluid; engineers have then to solve problems
including a coupling between fluid displacements and elastic deformations of
the structure.

We describe here the interaction between a free surface fluid and the
structure, assumed to be elastic, which contains it, in an external force
field. We follow J. Mathieu [13] and J. Mathieu, et al. [20], who computed

the transient simulation of such a process with the BACCHUS Code.

7.a. The Arbitrary Lagrange-Euler (ALE) Description

We consider a moving domain QF(t) deforming with velocity

w = w(x,t), and filled with an incompressible fluid of (constant) density
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F R
p which obeys the Navier-Stokes equations. We consider also a second

domain Qs(t) made of elastic material and limiting QF. The fluid is
limited by a free surface S and the contact surface =« =w(t) with QS.

The equations are

(DF{%E-VF £ (- w)V)vF} = div of + pFE¥ in oF
div vF =0
(7.1){
S
0> -g% = div o> + %% 1n o5
d )
k'&g‘(p |J]) =0
where
%%—= %%-+ (weV)p is the convection derivative associated with the
vector field w
i _ . i
v: = the velocity field in @
i_ R i
0~ = the stress tensor in Q
p1 = density in Qi (constant in QF)
f = external forces

J = Jacobian of the mapping QS(O)+QS(t).
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The ALE description is determined by the actual velocity field w which

is defined as follows:

w =0 1in an internal eulerian region

F

w = v©  on the free surface S(t)

w =v> on the wet part of the wall w(t).

Figure 7.1

The constitutive laws are

of = v[ZvF + (ZVF)t] + pl

for the fluid, v = the kinematic viscosity, p = the hydrostatic pressure,
and
S ps(t) t
o (t) = = F(t) z(t) F(t)

p (o)
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for the solid where I is the standard second Piola Kirchhoff tensor, F(t)

S

is the gradient of the mapping QS(O)+QS(t), and Z(O) = g (0) = 0.

The boundary conditions are as follows:

- On the structure, displacements are given on some part

Fu(t) of BQS(t)\n(t) and normal stresses are given along the remaining
part of aQS(t)\w(t).

- On the wet part of the wall, w(t), we have no cavitation,

v the normal on 7, and we have a partial slip condition of the fluid

along the wall

F F S
Org = T BV T Veg)

and finally the normal stresses are continuous

The discretization of the problem is made with a finite element

discretization in space, providing an easy handling of the complex geometric
configurations which are caused by large displacements. The elements are of
degree one for the velocities (= P1 for triangles, Ql for rectangles, Ql
transported Q, for quadrilaterals), and piecewise constants for the hydro-
static pressure.

A one-step explicit finite difference scheme is used in time. This

scheme is subject to the usual stability conditions limiting the time step.
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The criteria taken into account are

- free surface wave and viscous wave stability in the fluid

- acoustic wave stability in the structure.
Because of the more drastic limitation due to the stability criterion in the
structure, a subcycling procedure is used for the structure calculation.

A mesh adaptation procedure 1is necessary. At each fluid-calculation

step, the free surface has to be repositioned. The displacements of the free
surface and of the interface between the fluid and the structure induce a
modification of the mesh in the mixed Lagrange-Euler region and possibly a
modification of the Euler region (when its boundary intersects the free
surface or the wall) or a degeneracy of some element. Thus a rezoning is
automatically performed during the calculation. The rezoning 1s also
necessary on w(t) since any node belonging to BQF(t)fWBQS(t) should be
at the same time a vertex of some element of Qs(t) égg_of some element
of af(t).

A sample two-dimensional calculation is shown on Figure 7.2:




ANV

1]

[

\
\
\

—47-

\

|
A
E
[

AN

RN
N

[

47—
t=0
| t =0,2
Y
™~
N
:5 t =0,3
t =0,5

Figure 7.2

DS and S are given.

The internal mesh will be
automatically designed.

The bottom of the tank is in a

compressive phasis.

Notice the behavior of the
velocity fields on m:
double-valued with normal
component continuity.

The bottom of the tank has
entered an expansive phasis.

The tank has reached large
enough deformations.

The free-surface tends to
stabilize towards the
horizontal. Notice the

modification of the mesh in DF.
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8. Three Dimensional Euler Equations

The finite element method has been applied to the computation of the
solution of the Euler equations. We describe here the latest results in c.
H. Bruneau, et al. [7], which concern the computation of steady vortex flows

past a flat plate at high angle of attack.

8.1. Description of the Problem

The purpose of the computations in [7] is to investigate the developments
of vortices at the tip of the plate and their propagation after the trailing
edge. In the computations, the plate has no thickness and we expect a strong
vortex structure to develop at the tip of the plate; it is not possible to use
potential equations and the full Euler equations are necessary. For the
computations, the plate is imbedded in a 3-D rectangular domain as shown on
Figure 8.1; the aspect ratio is 0.5 and the angle of incidence is a = 15°

o

or a = 30", Figure 8.1 shows only half of the plate since symmetry with

respect to the y variable is assumed.

The incoming flow is given by aw = (u_, v, w) = (qa cosa, 0, q

2
. 2 _ %
sint), « as above, and Md the Mach number at infinity, M_ = ~5
2 a_
aj =y - D(H - 7—). In these computations, the flow is subsonic,
M = 0.7.
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Z1 )
-
o Yl,”’
— ”‘--—__l—? N
£y 0 X17
Zg
Figure 8.1
Euler Equations
They are written in conservative form
dpu + dpv + dow _ 0 Conservation of mass
9x dy dz
2
dpu + p + spuv + apuw =0
ax 3y oz
(8.1)
2
dpuy + pv_+p + dovw _ 0 Conservation of momentum
Ix oy 9z
9 9 d 2 +
puv . dpvw _ dpw P_ )
0X 9y 0z
YP q2
8.2 e+ ~— =H Bernoulli”s equation
G- Tt 1
where 0, ¢ ° = (u,v,w), p represents respectively the density, the
velocity vector, and the pressure; H 1is the total and Y the ratio of

specific heats.
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Boundary Conditions

The boundary conditions on the plate are easy; the taangency condition on
the plate (plane 2z = 0) reads w = 0, and the symmetry condition is v = 0
on y = 0. On the contrary, the boundary conditions at the 1limits of the
domain are not easy, especially downstream where it should allow the vortex to
go through the exit plane.

The flow variables have been set to the freestream values at the incoming
boundaries (x = Xg, Z = zo), and no coandition was imposed at the exit
boundaries (x = X1, 2 = zl) so that the values there are computed from the
variational formulation. Due to the utilization of a least square method,
this amounts simply to requiring that the first order equations be satisfied
at those boundaries (see [7] for a discussion of the boundary conditions).

At y = Y1 the far field conditions v = 0 1is used.

8.2 The Numerical Method and the Numerical Results

The equations are solved iteratively as follows:
- A fixed point algorithm is based on equation (8.2), computing the
density when u, v, w, p are known.
~ The nonlinear system (8.1) provides u, v, w, p, using the value of
p from the previous step of the iteration. This system is linearized by

~

Newton”s method with linearized variables ﬁ, %, W, S.

~ The system for G, 5, %, B is discretized by an appropriate Q
finite element method (discretization of the conservative variables

pPU, PV, PW, o) and the system is solved by a least square method.
Figures 8.2 and 8.3 show a sample of the discretization grid. Finally,

Figures 8.4 to 8.6 show the cross flow velocities at 70%, 90%, and 110% of the

plate
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Figure 8.2

RSt E]

L R Y
-re

m——— et} e
—

BRI

vennmniimiy ] ]
prramine ]
PO N 4 4 4
I SR 11 1
§§ 4111

Figure 8.4

30 bedoded

A An e o s se e esd

PO

—

Figure 8.3

bbb
M e o o o
P




-52—-

RERtnun iR
Pyt nnmntinim g [

T rnnnmiit

- sow
28 0 P PP DA b s v

i

\

1

]
]
1
1

 anammn 4

v VoW Y VY Y YYY

Figure 8.5

[T i T i

ro1 it } ]

T 1 1iinm
i

=3

AAM

}\\\\\VV\
IR

————— t—_ w——
e S ———— o ——y

1] JE iﬁ il
Bl

1

4 4

4

e
LA A e a0 & 2 2 2 4 22 2 22 g2 A AR

|

I Hnmnnnnnnmm I

Figure 8.6

]

YT Y Y Yy YT Y

o

—

PP > ’

e 4

P

I

PTG N 3
PP Prmamn) o

Adb I Srrhrmad.




-53-

FUTURE DEVELOPMENTS
The advantages of FEM are well known. In particular
- accurate and automating fitting of complicated geometries.
- lowering (dividing by 2) the order of the differential operators that
appear, due to the utilization of weak formulations.
~ avoiding the discretization of the boundary coaditioas of the Neuman
type which disappear in the weak formulations.
The inconveniences are
~ the need of a triangulation program for domains which has to be written
once for all but is a discouraging preliminary step for the nonexpert.
- the computational costs which by no way can compete with the achieve-
ments of multigrid and spectral methods.
However, the multigrid and spectral methods attain their optimal
efficiency for rectangular domains. It is then conceivable that a combination
of FEM and multigrid and spectral methods in relation with domain decomposi-~

tion and parallel computation can prove to be efficient.

9. Domain Decomposition: Remarks on Future Developments

The domain decomposition which 1lies at the foundation of the FEM can
appear to be, in a different form, directly related to future developments in
the method. Besides the geometrical considerations, there are many other good
reasons for decomposing the solution of a boundary value problem in a large

dowmain into the solution of similar problems in subdomains. Let us mention

some of them:
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a) Adaptive meshes

Adaptive meshes may be suitable for geometrical or analytical reasons.
For instance, the fitting of a curved domain with elements of different nature
which are more appropriate in various parts of the domain. The refinement of
the mesh in regions where the solutions are singular or nearly so (boundary
layers, shocks, front flames, etc.) allow for extra computational effort to be
concentrated in such regions. Thus finite elements of different types and
sizes may be used in various parts of a domain, and a different treatment of

the different regions can be useful.

b) Physical Motivatioas

Physical phenomena of a differeat nature may occur in different regions,
and these regions should not be treated in a similar manner. TFor instance in
aeronautics
- a turbulence model is necessary near the airfoil
- the Navier-Stokes equations with viscous effects and without turbulence
are necessary at a certain distance but not too far
-the Euler equations (i.e., no viscous effect) are sufficient far from the
airfoil.

Similar situations occur in combustion or in solid mechanics and lead

naturally to the decomposition of the whole domain into smaller ones.

c) Parallel Computation

The technology of computers will appareantly move more and more toward
parallel computation. The decomposition of a domain into subdomains on which

the computations are made simultaneously is appropriate for parallel computa-

—e . e il e
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tions. The difficulty is then to periodically synthesize the information from

all the subdomains to ensure a correct interaction of the subdomains.

\N\\~__,//

Figure 9.1

technique is satisfactorily mastered, then one can consider, as has already
been done (see for instance [13][23][19]), combining the advantages of FEM and
spectral and multigrid methods by using domain decomposition as suggested in
Figure 9.1. This has already been done, but the goal 1is to get as close as

possible to the performance of the fast methods.
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CONCLUDING REMARK
The FEM cannot pretend to be the best method in all situations, but it
has proved to be an efficient and performant method in many cases and can hope
to be the object of future interesting developments. R. Feyman says in his
book [12] that he was able to solve some problems that other people could not
solve just because he had some tools in his box that others did not have. Tt

would be too bad not to have the FEM tool in his box of numerical methods.
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